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Extended cluster variation calculations for the plane 
quadratic lattice gas 
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Ukrainian SSR, 42 Vemadsky Avenue, Kiev 252180, USSR 

Received 8 November 1983 

Abstract. A numerical procedure to perform the extended cluster variation calculations is 
reported. This procedure was applied to the 3 x3-site cluster variation approximation for 
the plane quadratic lattice gas with first-neighbour exclusion and second-neighbour finite 
interaction. All known results concerning the phase diagram of this model are summarised. 

The finite cluster variation method, first proposed by Kikuchi (195 I), has proved itself 
to be a powerful tool to obtain a qualitatively correct description of the thermodynamics 
of the lattice gas systems. Described in detail by Hijmans and De Boer (1955), Kikuchi 
and Brush (1967), Woodbury (1967) and Shulepov and Aksenenko (1981), to which 
we refer to avoid detailed discussion, it consists of the following stages. 

(i) The basic cluster is decided and its subclusters are constructed; these figures 
determine the expression for the thermodynamic potential, usually the free energy 
function f = E /  kTN - S/kN,  with energy E and entropy S per N lattice sites. 

(ii) All possible configurations of the basic cluster and the subclusters are enumer- 
ated, a fraction variable (FV) being assigned to each configuration. 

(iii) The set of compatibility equations between the FVS is constructed by partial 
summing over the ‘extra’ lattice sites of larger clusters. The normalisation equations 
are to be added to this set. 

(iv) The set of equations defined in (iii) is solved, i.e. the subset of independent 
FVS is defined, in terms of which all extra FVS can be expressed. 

(v) The free energy function expressed in terms of the independent FVS is minimised 
with respect to these independent variables to derive a set of simultaneous equations. 

(vi) The equations defined in (v) are solved for some fixed values of the external 
parameters, usually the density and the temperature. This solution describes the 
equilibrium state of the system. 

Among these stages, (iv), (v) and (vi) become rather cumbersome, especially for 
large basic clusters. To perform stages (v) and (vi) Kaye and Burley (1974a, b) used 
the constrained optimisation of the free energy procedure; Kikuchi (1974) proposed 
the natural iteration method, which does not require differentiation nor matrix inversion. 
Here we report another computational procedure which performs stages (ivHvi) 
automatically. The first three stages can also be automatised, but in this work they 
were performed by hand. 

Provided that the set of equations (iii) is given, stage (iv) can be performed using 
the Gaussian elimination algorithm. At every successive step the current equation is 
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used to eliminate one variable from all the preceding and following equations; this 
variable is marked to be defined by this equation. Some equations can turn into 
identities, in which case they are to be excluded from the set. 

When all equations are processed, we obtain the expressions for the extra FVS in 
terms of the 'independent' ones. Introducing them into the expression for the free 
energy function, one obtains the matrices of coefficients ab b ,  cj, with the rows (say) 
corresponding to summands of the type a,(Zjb,j.uj)ln(Zjb,uj) for the entropy and Zjcjuj 
for the energy; the column entries are for the independent variables uj and the density. 
Then the first and second derivatives of the free energy function with respect to the 
independent variables can be easily calculated, so Newton's method can be applied 
to perform stage (vi). 

To test the program we considered the 3 x 3-site cluster approximation for the 
ordered phases of the plane quadratic lattice gas with first-neighbour exclusion and 
second-neighbour interaction E.  For the definition of phases see_ Aksenenko and 
Shulepov (1982). The calculations were performed for phase h x J 2  (26 independent 
variables), phase 2 x 1 (33 independent variables) and the low-temperature limit of this 
phase, i.e. the first- and second-neighbour exclusion (18 independent variables). The 

Table 1. The coordinates of characteristic points shown in figure 1, with p, r and z denoting 
the density, grand potential and the activity respectively. For the cluster variation calcula- 
tions the size of the basic cluster is specified, e.g. 2 X 1. 

Exact or 
best 

2 x l a  PYb EL'  EL^ 2x2'  2 x 3 '  CE8 3 ~ 3 ~  known 

pT 0.25 0.275 0.2857 0.3170 0.33 0.341 1 0.368' 
rT 0.5232 0.6121 0.6931 0.725 0.7451 0.792' 
zT 1.6875 2.0 2.25 2.8729 3.3346 3.7962' 

T~~ 1.9516 2.933 3.834 2.969 3.0340 
prc 0.1601 0.158 0.1667 0.1685 0.1947 
rTC 0.2142 0.142 0.1150 0.1549 
zTC 0.2894 0.121 0.0741 0.0904 0.1242 

4.3630 5.054' 
0.1993 0.2763k 
0.0848 
0.0571 

0.0940 0.0605 0.0357 0.038' m T~ 0.1408 
pL 0.2202 0.2618 0.2366 0.2452 0.25' 
ZL 2 1.226 505.0 

Ps 0' 0.2249 0.1910 0.2018 0.2218 0.24W 
TS 0.9242 0.693 1 0.7878 1.0157 
ZS 22.54 11.090 17.22 48.88 109.9 

a Burley (1961), Aksenenko and Shulepov (1982). 

m 

Percus-Yevick approximation, Robledo and Farquhar (l976), Shulepov (1983). 
Branched lattice approximation, Aksenenko and Shulepov (1978). 
Branched lattice approximation, Aksenenko and Shulepov (1982). 

Kaye and Burley (1974a). 
Expansion in irreducible clusters, Bellemans and Nigam (1967). 
This work. 

' Series expansions, Gaunt and Fisher (1965), Baxter ef a/ (1980). 
' Exact finite method-phenomenological scaling, Kinzel and Schick (1981). 
' Exact result pTC = ( 5  - JS)/ 10, Huse (l982), Baxter and Pearce (1983). 
' Non-physical result ps = 0. 

e Kaye and Burley (1974a), Aksenenko and Shulepov (1982). 

Phase 2 x 1 does not exist in these approximations. 
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last two cases were of particular interest since this phase can be shown not to exist in 
the 2 x3-site cluster approximation, and our previous studies (1982) in the 2 x2-site 
cluster approximation indicated the existence of a first-order transition between the 
disordered phase and the 2 x 1 phase. 

We tabulated the thermodynamic functions along the isotherms using the initial 
approximations either constructed from the solution for the 2 x 2-site cluster 
(Aksenenko and Shulepov 1982) on the first few steps of the tabulation, or using the 
polynomial extrapolation on the subsequent steps. The convergence was rather rapid: 
it took not more than five iterations to achieve an accuracy of order 

We found it useful for reference purposes to cummarise in table 1 all known 
results concerning the phase diagram of the model considered. Figure 1 explains the 
notation used in the table. It is interesting to note that the values of the characteristic 
parameters being extrapolated against the inverse number of cluster sites converge 
rather well to their most accurate known values. Contrary to our previous calculations 
(1982), no first-order transition loop was detected near the high-density branch of the 
curve separating the disordered phase and the 2 x 1 phase. 
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Figure 1. Phase diagram of the plane quadratic lattice gas with first-neighbour exclusion 
and second-neighbour attraction (left) and repulsion (right). Shown are three phases of 
the system; 7 = exp(-s/kT), p is the density, TC the tricritical point, L the limiting separation 
point between the disordered phase and the 2 X 1 phase, and T and S the transition points 
for r = 1 and 7 = 0 respectively. 
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